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An effective solution is obtained for the plane problem of convective heat
transfer from a heated body of arbitrary shape in a stream of perfect incom-
pressible heat-conducting fluid, Solution of this problem is of interest in the
theory of heat transferin liquid metals, of the mass transfer of a bubble moving
in a finidized bed, in the theory of ablation and freezing in a stream of heat-
conducting fluid, etc. The input boundary value problem in Helmbholtz' vari-
ables reduces to the similar problem of convective heat transfer from a heatad
plate in a longitudinal stream of perfect incompremible fluid, a problem that
is solved, after some transformations, by separating variables in eiliptic co-
ordinates. The solution is in the form of series in Mathieu's functions, Simple
asymptotic formulas are obtained for low and high Péclet numbers, A simple
interpolation formula {s obtained for the heat flux over a range  of Péclet
numbers,

1, Statement of the problem, We consider a heated cylinder

whose generatrix is parallel to the 2 -axis so that its cross section contour lies in the

zy -plane, The cylinder is in a steady imotational plane-panllel flow of perfect
incompressible heat-conducting fluid with thermal diffusivity @ and thermal conducti-
vity k;. The fiuid velocity at infinity is Vo and is directed along the 2 axis.
The cylinder temperature 7', is assumed constant and that of the fluid at infinity to
be zero, We have to determine the temperature field and the heat flux from the body
to the fluid,

The assumption of perfect fluid with its associated smallness of the viscous bound -
ary layer thickness in comparison with the characteristic dimension of the cross section

(or with the thickness of the thermal boundary layer at high Péclet numbers) is justi-
fied, for instance, for molten metals used as coolaats in atomic reactors [1].

This problem is also of {nterest in the theory of mass transfer in the case of a bubble
moving in a fluidized bed [2], when the Péclet number, as determined by a linear
dimension of the closed circulation region, the bubble relative velocity, and by the
effective diffusion coefficient, can assume widely varying values,

The method of freezing is used in mining for cutting wells and shafts in formation
containing underground water. The problem is further encountered in the calculation
of thickness of ice-forming bodies and of heat fluxes [3]. Other fields of its pasible
technological applications aiso exist,

The boundary value problem is of the form

oT_ o2 a2
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a9 a
vx=vo%, v,,=vo—£li-, Ap=20

Ir=0, vi=v, v,=0 22+ y?—> o (L2
I'=T, 0¢p/0n=0 on L :
where T’ is the temperature, v, and v, are fluid velocity components, and n

is the direction of a normal to the contour, The potential and the stream function

of the fluid potential flow (of dimension of length) are denoted by ¢ and 1 , respect-
ively. Since for a given contour @ and v are some functions of z and y , they
can be determined by methods of the theory of functions of complex variable. We

Fig.1

assume these functions to be known, It can be assumed without loss of generality that
atthecontour L % = 0, —@, << ¢ << @,. . Passing in formulas (1.1) to
variables ¢ and 1 , we obtain the following boundary value problem (see Fig. 1):

T 9T aT (1. 3)
Vogg =@ (*a'a + w)

T=Ty, v=0, |o|<@s T=0¢+¢"—> o0

In variables @Y we thus obtain the problem of convective heat transfer form a
heated plate of width 2@, in a lengthwise stream of heat-conducting perfect fluid
flowing at velocity v, (Fig.1).

We introduce the new function

u=Te™ (A=uv,/(2a) (1.4

and obtain the following boundary valne problem:

% d%u

u="Te*, $=0 |o|l<qo
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2, Solution of the boundary value problem, We passto
elliptical coordinates £ and 7

¢ = qochEcosn, P = gyshisin n (2.1

and, setting u = Z (§)¥ (1) , separate variables, For ¥ (1) we obtain the
Mathieu equation and for 7Z t3) the modified Mathieu equation

¥/ on® + (b — 2g cos ¥ =0 (2.2)
*Z — 2 __ (%%
S —(h—2qch2)Z=0, g=—k ==y <0

where & is the separation constant and k& is the Péclet number.

Conditions of the problem clearly imply that solution (2, 2) must be even  and
periodic of period  or 27. Mathieu functions of the form Ceym (1, —g) and

COam+1 (1, —q), where m = 0,1, ... are such solutions of Eq. (2.2).
Eigenvalues % = gy (g) and h = byms1 (§) correspond to these functions,

The solutions of Eq. (2.3)-must be real and vanish when E— oo. The
modified Mathieu functions Fek,, (§, —¢) and  Fekgn,; (E, —g) aresuch
solutions.

All notation related to Mathieu functions conforms to that in [4, 5], and subscripts

2m and 2m -4 1 indicate that when ¢ = 0

Ceym (1, 0) = co8 2mn, cCegmyy (M, 0) = cos (2m + 1)y
The general solution of Eq, (1.5) is of the form
u= 2 %Gen(ﬂ,—Q)Feku(E’—Q) (2.4)
N}

Functions ce, (1)) constitute a complete orthogonal system, hence the boundary
condition can be expanded in series in ce, (s —¢) when E =0

Q. (2. 5)
g3k CO8T — 2 facen(n, — q)
na=0

25

fo=5 S cen (1, — g) e M dn
0

For the determination of f, we use formulas [5]

coam (1, — 0) = (— 1) 3 (— 1) 45" oos2rm (2.6)
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cegmir (M) — ¢) = (— 1)™ rglo (— 1)y B cos @r + 1) m

where A4,.(3™), and Bgm“) are coefficients of the expansion of Mathieu functions
in series whose numerical values are tabulated in [4, 6].
Since a term by term integration of such series is possible, we have

fam= (=072 3} (— 1 AF™ I, (— 2k (2.7

famsa = (— )2 3} (— 1 BEE™ Ly (— 28)

We recall the following representation [4]:
o
S cos muet 02N dn = 25/, () (2.8)
0

where I, (f) are modified ™M -th order Bessel functions of the first kind,
Thus the solution of the boundary value problem is of the form

T (1,}) = 2Tgetkcosnebt 3\ D, ce, (1, — g) Fkn (£, — ) (2.9)
Naml

Fek, (8 —q)
Fk. (€ —q) = Fe'k'n_(ol,' =9

ey, (0, ¢)

Dy = (—1)™ Y (—1)" A4, (2K) = A
Te=()

Dymar = (— )™ Y (— 1 B Lyria (2K) =
Te=p
— Lm0 7D paman)
g,y (0, 9)

Representation of D, in terms of Mathien functions of zero argument makes
possible the use of computation tables (e.g., in [6]).
Let us determine the heat flux Q from the body to the fluid (per unit of cylinder
length) o
aT
- —k,fgrad,,f’dl = — 2k S Wlwsodcp = (2.10)

—Po

—2k,{ 2| an
0
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From solution (2.9) we obtain that 9T /9% for £ = 0. Integrating term
by term and applying integrals (2. 8), from (2. 10) we obtain the formula

(2,11)

0* =g, = Y, (— I/ D2 Fky' (0, — )
n=0

, 3 Fek,’ (£, — q)
Fkn (g,-—-q).——-"-a—E'Fkn(gv_q): Fe;"(o,—q)

 [AP™]? Fekom (0, — @) = (— 1)™" ceqpy (11/2, g) codm (0, ¢)
uk? [B{E™13 Fekomes (0, — @) = (— 1) cegmas (7/2, q) [ceamsa(0,9)12

3, Analysis of solution, Low Péclet numbers. We
investigate here the behavior of formulas (2. 9) and (2. 11) at small | g |, which eo-
rrespouds to low Péclet numbers X&. All functions appearing in the solution can be
represented by series in trigonometric or Bessel functions with coefficients A, or

By,4y.  For this it is necessary to determine the behavior of the latter for % —»

0 . This is generally achieved by using recurrent relationships and normatization
conditions of the type (for ce,n, (1, ¢))

smAo — qAs = 0, (@sy — 4As — g (A, + 24,) =0 (3.1)

(@zm — 4%)A4,, — q(Agrss + Agps) = 0

1Y ®
- S cedm (M, @) dn = 24T+ Y (4™ = 1
0 T==l

The principal terms of expansions of coefficients A2®™ and B, ™) at
small k were obtained by Mathieu in the form [4]

m __pm . g ml k \2p (3.2)
Awien = Bitn = (— 1) 15 (7)

(m—p—1) / k\2?
Ai.'."-’szﬁ.’:'.’,pz—ﬁ-(,,—,”:m)—(—i—) ,» m>0 p>0

According to these estimates coefficients 4, (™ and B,(™  are of oxder
unity, A more exact expansion of these coefficients is of the form

Ap™ ~1 — E,, (k]2)*

where E,, are coefficients yet to be determined,
Using (3. 2) and the normalization condition (3. 1), from the last formula we obtain
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A=t (5, AP=1-F () (3.3)

)4 mit1 (ke
m ~1——(m_2—_1)’(2) y m>2

Expansions of coefficients A4,.® are similarly derived

= (3]
=y U (B -2 (), e

Using (3.3) and (3,4), from (2. 6) we obtain expansions for ce, (1, =-g) in powers
of K (or |g]). Forexample

oot =)= 12 [1-+2 (5 cmin— ()" (1—-250)]

Using the representations [4]

CCqpm (0, 9)

Fekom (6 — 0) = (— )" =22

Fekimﬂ (Es - q)

0,
(— 2( 1)" B Kyun (2% ch)

2,( 1 A8 Ky 2kenp) >

and expansions of modified Bessel functions K., of the third kind in powers of the
argument, and formmlas (3, 3) and (3.4), we obtain expansions for Fek, (§, —g).
As the result we have the following formulas:

T Inch E+%(0)—%(€) _ 4cosnii+xu@)] )
=1+ o vk S ireay ot ERCD
exp (2kcosmchl) (k1)

Q*~— (1 +98/4)In (yk/2) — 28 (3.7)

2i . _(2i—1)
%o (B) = Zgn %1 (§) = Z EESEANE 1 432 ch¥E

tuml fmx}
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where Iny = ¢, ¢ = 0.577. .. is the Euler's constant,

High Péclet numbers, Physical considerations indicate clearly that
athigh % the fluid is heated only in a comparatively thin layer stretching in the
direction of the ¢ ~axis, i.e. at high k the condition

PT | g S 3T [ dg°

of the thermal boundary layer is satisfied,
It is thus possible to obtain asymptotic estimates at high Péclet numbers using the
solution of the following self-similar problem of the thermal boundary layer:

arT T
Voge =05 (> — %0 H>0)
T—":TQ, q)=0; Tmo, @z"‘"wo

The solution of that problem is of the form

= L kG (3.8)
T'=T, erfc {[‘Po ¢+ @o)] }
Q* = 2/ ) Vik>1) (3.9

In the boundary layer approximation solution (3. 8) is obviously not valid in the
neighborhood of the singular point = ~—@q, P = , where it is necessary to
use the exact genera] solution (2, 9), (2.11),

Neighborhood of the singular point, The field near the
singular point @ = —@o, P = 0 can be determined for any Péclet number using
the solution of the following boundary value problem {7}

a%u
£
u= Tug"m) m e~ MUrPe), P = 0, @ > —9,
ulop =0 =0, << —@

+ % = Alu, u="Teho (3.10)

We pass to polar coordinates 70
¢+ 9o =rcos®, P=rsinb

Using the method of separation of variables we obtain for the solution of (3, 10} the
following integral representation (of the Kontorovich —Lebedev type):

u = { (4chv0 + Bshv8) Ky (Ar) dv
0
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inwhich A and B are unkown functions of v, and which vanishes for 7 — co.
Using the boundary conditions and the Kontorovich —Lebedev tables of integral

transformations (9], we obtain

L

7 = 21 § (ch v8 — th vr sh v8) Ky (Ar) dv

[

from which for the heat flux through segment —¢, < ¢ < ¢, we have

29,
1Y au

Qe
> aT {3.11)
Q = — 2k a4 = — 2kye~19e
}WW s )

eir..f‘f_ —
) r

2o
2y 2 b drz 8 EPra
"'V":‘kiTn oS *ﬁ“—ﬁkﬂovr’"%

where we used the following relationship [8]:

o

S vthvaKw (z)dv = Vge*
[

As the result, we again have formula (3. 9).
It is remarkable that the respective for-

2" mulas obfained earlier with the use of the

/ approximate boundary layer theory is exact-
1 z ly the same as that derived using the exact
| 2 singular solution in the singular point neigh-
)

a4
/ borhood,

4. Interpolation formula
forthe heat flux, The complex
o as 1 9 & exact formula (2. 11) for the heat flux s not

convenient forcalculationsover the whole
Fig. 2 range of Péclet numbers; it can be approx-
imated by the following simple formula:

HgM+ L 1g-N (4.1)
O = S (0*=0.")

E=Q/n)rVE G=—(1+92/4 I (yE/2) — 213

where H, M, and N are some constants, For k<1 and k1 function
Q@.* (k) behaves as the exact asymptotic solutions (3,7) and (3, 9), respectively,
Constants ¥, M, and N are determined as follows. We calculate the mean
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square5 interpolation error over ten points k; uniformly spaced on the interval 0.01<<
k<

o, M, ) = {5 i [Q* (k) — Qa* (R}

F=31

Quantities Q* (k;) were obtained from the exact solution (2, 11) using a compu-
ter, The nonlinear function o (H, M, N) was then minimized by Seidel's method
of coordinate-wise descent. The following values of constants were obtained H =
20, M = 0.02,and N = 1.30. The error of interpolation by formula (4. 1) did
not exceed 2%,

Function Q* (k) is shown in Fig.2 by the solid line calculated on a computer
using formula (2.11). The asymptotic solutions (3. 7) and (3, 9) are shown there by
dash lines. Thus solution (3. 7) which is valid for approximate calculations for &k <

5-107% yields results with an error of less than 4%, while for & > 1 formula
(3.9) is valid, yielding results with an error of less than 2%,
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