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An effective solution is obtained for the plane problem of convective heat 
transfer from a heated body of arbitrary &ape in a stream of perfect iacorn- 
presstble h~t-c~~c~g &id, So#Nat of thir isofisterMiJlthe 
~eo~of~at~~r~~~ oftbe of g 
in a fluidized bed, in the t&ozy of ablation and fmezing in a 
conducting fluid, etc. The input value probiem io HelmboUz* vati- 
able8 reduces to the Simil8r probz vt heat transfer from a heated 
pfib in a ~~~~1 tim of per&A &comp~~&le fluid, a p&i&m that 
irr solved, after some tranaformation~, by aeparat&g variablea ia eili@ic co- 
ordinatea. The solution is in tixe form of suries in Mathieu’s funatiapr. Simple 
asyzzk@otk form&# 8r(? obt&ed foa tow aad b@t P&let numberr, A simple 
illte#p&M~ ~~~~~t~~a~~~~ of P&let 
ENimbtns. 

The ~~~ of perfect fluid with its aaoci8tcd amaDness of the v$scau bouod- 
arjr layer thicbm in compar&oo with ?he characteristic &men&on of the cIodLI sectian 

(or with the tM&ess of the tberm81 bowd8ry layer at high P&let numbera) is ju8ti- 

f&d, for iustawe, for molten mefats wed as cooiants in atcmic reactor [Il. 
This problem is also of interest la the theory of mass traosfer in the catt of a bubble 

moving in a f’luidized bed [2& when the P&cl& number, a$ determined by a linear 
dfmension of the clartd circulation region, the bubble relative vek&y, and by the 
effective &ffu&n coefficient,~ can -me widely varytig values. 

The met&I of freezing is used in mining for cutting wells and &a@ ia formation 
coatrrirrfng underground water. The problem is further encountered fn the cakulatioo 
of tt&dawa of ice-fo&g bodies and of heat fiuxes [3]. Other fields of its poaaib1.e 

total applicatiw aft0 exist, 
‘I’&? boundary V8bl8 problem iS Of the fOEn 

918 
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acp vx = vo x , 
acp vy = vo ay , Acp=O 

T = 0, v, = v,, vv = 0, x* + pa + 00 

T To, t%p/dn=O on L = (1.2) 

where T is the temperature, v x and v,, are fluid velocity components, and n 
is the dire&m of a normal to the contour. The potential and the stream function 
of the fluid potential flow (of dimension of length) are denoted by q, and 9 , respect- 
ively. Since for a given contour cp and 9 are some functions of x and g , they 
can be determined by methods of the theory of iimctioa of complex variable. We 

‘6_ ! 
I 

-- --To 0 PO 
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Fig. 1 

assume there functions to be known. It can be assumed without loas of generality that 
atthecadaar L $=O, --tpo<(p<cp~. . Paasinginformulas(1.1) to 
variables cp and 9 , we obtain the following boundary value problem (see Fig. U: 

aT 
uoa(p=u ( PT w+a$) (1.3) 

T -To, $= 0, Ivl<‘po; T=O, ‘P*+$*+x 

In variables * we thus obtain the problem of convective heat transfer form a 
heated plate of width 290 in a lengthwise stresm of heat-conducting perfect 5uid 
flowing at velocity v,, (Fig. 1). 

We introduce the new function 

u = Te-M (h = V, / (2a)) 

and obtain the following boundary value problem: 

++$+su 

(1.4) 

(1.5) 

u = TOe-bp, $ = 0, I cp I< CPO 
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2. Solution of the boundary value problem. Wepassto 
elliptical coordinator E and q 

cp = cpoc&osq, 9 = cp,sh@in q (2.1) 

and, settiug u = 2 (&)‘Y (q) , separate variables. For Y (11) we obtain the 
Mat&u equation and fez 2 (E) the modifkl Mathieu equation 

d2Y / 3’ + (h - 2q cos 2q)Y = 0 (2.2) 

$$-(&22qch2&)2=0, q=-kk?=-(T)t<O 
(2.3) 

where h is the scparatioa catant and k is the P&let number. 
Conditions of the problem clearly imply that titian (2.2) must be even and 

periodic of period n or 2% Mathicu functtom of the form C& (11, -8 and 
%mtlh~ -q), where m = 0, 1,. . . are aucb solution8 of Eq. (2.2). 

Eigenvalues h = a,,,, (q) and h = b,,l (Q) coneapoud to these functions. 
The solutiensofEq. (2.3)mustberealaudva@hwbeu t-+00. The 

modified Matbieu functions Fek, (E, -q) and Fek,mtl (f, -g) are such 
SOllltionk 

All notation related to Mathieu functions conforms to that in [4,5_j, and subscripts 
2m and 2m+ 1 indicatethatwben Q =0 

corn h 0) = CO8 2mq, %mtl (119 0) = co8 (2m + i)q 

(2.4) 

Functions c8, (rl) coottltute a complete ortho system, hence the boundary 
conditioncanbeexpandedinsedesin 

(2.5) 

For the determination of f,, we use formulas [51 

Wirn %- ( (2.6) 
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%m+1 @I* - q) = (- l)+&- l)'B~+%os(2r + 1) q 

where ds,(sm)z and Baby” are coefficients of the expansion of Mathieu functions 
in series whose numerical vahks are tabulated in [4,6]. 

Since a term by term integration of such series is possible, we have 

f am = (- qm 2 r; (- 1)‘Ap’ lar (- 24 

flTn+1= (- 1)m2r&- q’G+l’&r+l(--) 

(2.7) 

We recall the following repreaentati~ [43 

cn 

s cou mT@ co8 fl dq = 2n.1, (t) (2.8) 
0 

where 1, (t) are modified m-th order Bessel functions of the first kind. 
Thus the solution of the boundary value problem is of the form 

T (rl, D = 2% skcosqat i &ce,(q, - Q) Fk, (Et - q) (2.9) 
n-0 

D Fn+l = (- 1)“‘1 z (- l)‘B~$+‘)l~,+~ (2k) = 
r-0 

- %n+l("~--) &pm+" 

~;,+,&4 9) l 

Representatico of D, in terms of Mathieu functions of zero argument makes 
possible the use of computation tables (e.g., in [6D. 

Let us determine the heat flux Q from the body to the fluid (per unit of cylinder 
lq$h) a. 

Q = -kf grad,Tdl= -2kf 1 -$-lqdd~ = ( 2.10) 
--00 
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From solution (2.9) WC obtain that 8T i a& for E = 0. Integrating term 
by term and applyfng integrals (2.81, from &lo) WC obtain the formula 

(- 1)~” D,” Fk,’ (0, - q) 
( 2.11) 

Fkn’ 6, - cd = + Fk, (E, - q) = ‘;z !,--;) 
n 

II [Ai2”‘12 Fek&, (0, - q) = (- I)“‘+’ ceepr (n/2, q) c& (0, q) 

n/t2 [B$m+1’]2 Fek,,(O, - q) = 6 V+lcem+l b/2,4) NL+dOd12 

3. Analyris of solution. Low P6clat numbarr WC 
investigate hcrc the behavior of formulas (2.9) and (2.11) at small 1 q I, which co- 
rmspoMstolow%cletmmbem k. AllfunctiauappewinginthcsoWioncanbc 

rcprcuMed by sccics in tdgonomctdc or Bwcl funcUais with coefficients AZ, or 
B tr+l. For this it is mcaary to detembm tb behatiax of the latter for k --t 

0. This is gctwally achicvcd by udng rcuwnt rdatioMt@ aad zmmlizattm 
coaditioat of the type (for eel, (n, q)) 

a,,Ao - ,qA, = 0, (asm - 4)A - q (A, + 2Ao) = 0 (3.1) 

The principal terms of cxpamioa, of oocfficicnb &&*m) and Bt,(an+l) at 
small k were obtained by Mathicu in the form [4] 

(3.2) 

According to thare cstimatcs cocfBoftnts d,(m) and B,,,(m) are of order 

unity. A more exact expansiar of these coeffldcnts is of the form 

d,,,tm) s 1 - Em (k I 2)’ 

where Em arc cocfffcic~~tr yet to be dctumined. 
usfng (3.2) and the normalization condttfon (3. l), from the last formula we obtain 
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A$&__ ms+i. k 4 

(ma- I)* ( ) 2 ’ m>2 

are similarly de&cd 

(3.3) 

Using (3.3) and (3.4), from (2.6) we obtain cxpansio~~ for ceo (q, &q) in powers 
of @ (or 1 (I 1). For urample 

Using tie repreaeritaffons 141 

and expan&on$ of modified Besel fundions & of the t&d kind in powus of tie 
argument, and famulas (3.3) and (3.41. we obtain expansions for Fek, (E, -q). 

As #e result we have the following forma&s 

Q* m - (1 + 9P / 4) In-1 (yk / 2) - 2P (3.7) 
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where In y = c, c = 0.577, . . is the &iler’s constant. 
H i g h P i c 1 e t n u m b e r s. physical carufdeatim indicate clearly that 

at high k the fluid is heated only in a comparatively thin layer stretching in the 
direction of the ‘p -axis, i.e. at high k the condition 

of the thermal bamdary layer is satisfied. 
It is tbur po&le to obtain asymptotic estimates at high P&let wlmbeua u&g the 

solution of the following sclf+&nilar problem of the tlmmal baundaq layer: 

T = To, $ = 0; T = 0, cp - --‘PO 

The solution of that problem is of the form 

(3.3) 

Q* = (2 / $1~ JfF(k > 1) (3.9) 

In the bcwndar]i layer ap?tton solution (3.8) is obviously not valid in the 
nei ofthestngufarpoint Ip=--P)o,*==O, whereitisneceasaryto 
use the exact gtnrrrol solution (2.91, (2. Ill. 

Neighborhood of the singular point. Thefieldnear the 
singular point Cp = -cp0,1(, = 0 can be detarmind for any %c&et number using 
the sohtton of the following boundary value problem 03 

We pass to polar coordirxates rt3 

‘p + v. = r cos 0, 4 = r sin 0 

Using the method of separation of variables we obtain for the sol&&on of (3.10) the 
following it&qral t&xl (of the Gm&xovlch -LebeKiev type)$ 

24 = f(AchVe+ Bsbve)K&r)alv 
0 
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inwbicb A and B a~~~~c~~of Y, ~dw~~~~forr~~. 
Using the boundary conditions and the Kontorovich -Lebedev tables of integrai 

transformations [9]. we obtain 

fEom wbicb for the beat flux tbraugb s~rn~t -q. 6 cp Q 9ps we have 

where WC used thc follow&g relatfo&lip p1: 

AS the result, we again have form& (3.9). 

Fig. 2 

It is remarkable that the respective for- 
mulas iMain& wilier with the use of the 
app~~~.b~~ layer theory is exact- 
ly the same as that derived u&g tie exact 
singular so&&ion in the singular pofnt neigb- 
borbood, 

4. Interpolrlion formuSa 
for the heat flus The compkx 
exact formula (2.11) for the heat 8ux is not 
convenkut forca&ulatiowtver the whole 
range of P&let nu~us; it cm be appx- 
imated by the big simple f~~la: 

(4.1) 

where H, M, and N an somt constants,, For k (s 1 and k > f furbicn 
Q@* (k) bebavea as the exact asymptotic solutions (3. “0 and (3.91, nspecth3y. 

ts R, M, and N are determ&ed as follows. We calculate the rnGBll 
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uniformIy spaced on the WervalO.Ol< 

u (H, &I, N) = {+ 2 [Q* (ki) - Qo* (kr)]a}” 
4p.l 

Quantities Q* (ki) were obtained from the exact s&utW (2.11) using a compw 
te.r. The ncMinear function (I (a, &Z, N) was tbcn minimized by Seidel’s method 
of coordinata-wise descent The following values of censtants were obtainad X = 
20, M = 0.02,snd N = 1.30. The~roffnttiaolnttoabyformula(4.1)did 
not exceed 2@/0. 

Fuxwtion Q* fk) is shown in Fig. 2 by the solid line calculated on a computer 
using formula (2.11). The asymptotic zohrtions (3.7) and (3.9) are shorn them by 
da& lines. Thus solutiou (3.7) w&b is valid for approximate calculationa for k < 
5.10’8 yiekisnrurtrwithanernxoflemthan~ whibfm k>l form& 

(3.9) is valid, yielding r&l@ with an ermr of leas than 2%. 
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